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Microwave Scattering From A
Random Medium Layer With A
Random Interface

1. INTRODUCTION

In the field of wave propagation and scattering from layered media
a problem of great practical interest and importance is the one where
both medium parameters and interfaces have random fluctuations. Most
natural objects are best represented and studied by this kind of model.
Indeed the topic of wave scattering from random surfaces and that of -
propagation and scattering in random media have been extensively
studied by Beckmann and Spizzichino', and by Ishimaru’. However, little
has been reported about the problem that involves both random media and
random boundaries. Within the framework of radiative transfer theory,
Fung and Chen’ and Fung and Eom* have solved this problem and
illustrated its usefulness by applying it to several practical
situations. Unfortunately the numerical procedure that they have used
has obscured much physical insight. Furutsu’ has also considered a
similar problem and has given a comprehensive analysis. However his
work does not seem to be readily amenable to numerical computations. We
provide in this report a first-order perturbation solution that is at

once physically transparent and computationally elementary.

(Received for publication 28 August 1992




In Section 2 the geometry of the problem is described. The problem
is then mathematically formulated in the next section. Section 4 is
devoted to the derivation of the scattered field. In the following
section the bistatic scattering coefficients are calculated. Section 6
contains a brief discussion of some of the properties of the results.

Section 7 gives the conclusions,

aey) F Region O

M, €, Region 2

Figure |. GEOMETRY OF THE PROBLEM




2. GEOMETRY OF THE PROBLEM

Fig. 1 shows the geometry of the problem. In this two-layer
problem the bottom interface is planar while the top rough interface is
described by the random function z = h(x,y). Thus we have three
regions: Region 0, z > h(x.y). is free space with permittivity €, :
Region 1, -d < z < h(x.y) is the layer with randomly inhomogeneous
permittivity € (T): Region 2, z < -d. constitutes a homogeneous medium
of permittivity €,. All three regions have the same permeability Q. The

permittivity of the layer & (Y) may be written as

Im lf(?) (1)

where €3, = ( €;(T) ) is the mean part and &¢(T) is the
fluctuating part. Both h(x.y) and €1¢(Y) have zero means and small
variances. The variances of h(x.y) and g ¢(Y) are denoted as 012) and

2 . . . .
c, respectively. Further, three correlation functions are defined as

(5 -5) = (0,5 (5)) (2a)
Cb(Fl.L_ ?21.) = (h(?ll)h(-fm.)) (2b)
c.(2-%,) = (eu(fl)h(le)) (2¢)

A A
Here and henceforth xx+ yy is denoted as T.




3. FORMULATION
For a plane wave incident on the random layer from above ( Region
0) we are interested in the far-zone scattered field in Region 0.

Mathematically we may formulate this problem as follows.

Let f%(fﬁ_ E (Y) and EE(?W denote the electric fields in Region 0,

1

Region 1 and Region 2 respectively. These electric fields satisfy the

wave equations:

VxVxE(E) -k E(® =0 ., z>h (3a)

VxVxE® -k E@-a® E@E ~d<z<h (3b)

VxVxE(D -, E(H) =0 , z<-d (3¢)
where

ki = wzp €, » =02 (4a)

K2 (4b)

aD) = o b e (D) (5)

Further, the electric fields must also satisfy the boundary

conditions

x E.(E, h) =fAx E(E, h) (6a)




Ax [vxE |, m=-4x [vxE e, w (6b)

2 x El(fl,— d) = 2 x Ez(fl,— d) (7a)
and
8 x [ v x E ](fl,- d) = 2 x [ v x E, ](?1.- d) (7b)

N
where n is the unit vector normal to the rough interface pointing into
Region 0. The task now is to solve this system of equations. In
. . T S, .
particular we need to find rlj‘;n°° Eo (Y¥) . the far zone incoherent part

of the field in Region 0.

4. ANALYSIS

We first consider the situation where the boundary is unperturbed,
that is when h(Y) = 0. The electric fields in this situation are
labelled by the superscript (0). These fields satisfy the following

wave equations and the boundary conditions.

2 =

S E (0)(?) -0, 2z>0 (8a)

VXVXE (0)(r) -k

vxvxEPm - EP® -am V@,

-d<z<0 (8b)

xEF 0y- zZxE (o)(r 0) (9a)




z x [ VxE (0)] (F.0) = 2x [ v x El(o)] (£,.0) (9b)

Th+ solutions to Eqs.(8) and (9) may be written as

_(0) _(00) 0 ©, (00 o

E, (F) = Ey (D) + { dz) [a%F Gy (F.E)) a(F)- Ej(F)) (10)

_(0) _(00) 0 ©, (00 _(0)

E, (F) =E (F)+ { dz, [ 4, G (T.F) a(F): E\(F) (11)
_(00) _(00)

where 601(?,?1) and Gll(?.fl) are the dyadic Green's functions: the
first subscript stands for the region where the point of observation
is located while the second subscript indicates the region enclosing
the source. Also. the arguments T and ﬁvdenote respectively the
points of observation and source. The superscript (00) indicates the
situation when both the medium and the boundary are unperturbed, that
is. when h(fl) = 0 and elf(f) = 0.

For small 6, we may approximate Eq.(10) as

_(0) _(00) 0 ©,  _(00) _ _(00)
Ey, () ~Ey (D + [dz; [ G (T.F) aF)- E(F)) (12)

-4 - ®

Also when 0, and |Vh| are small we can approximate the field

on the rough interface as




Eo(fl,h) = EO(fL'O) + h az EO(TL.O) (13a)
E. (Y ,h) = El(rl,O) + h az El(rl.O) (13b)
Noting that
A
n =z-Vh (14)
we may write
A

A _ - A _
h) = (z xV h) Elz(rl,O) + [ I+zVh ] ez X El(rl,O)

+zh [ Bz X EL ] (TL,O) i L=0,1 (15)

)
T) (16)

where 8 is the small parameter of the problem. From Eqs.(16) and (15)

we have



A (D A 0)
+ 6 z X El(?L'O) + (z X V h) Elz(fl'o)

A _(0)
+zh [ 3, x E, ] (£,,0) ; t=0,1 (17)

On substituting Eq.(17) in Eq.(6a) we obtain the following relations.

Zeroth-order relation:

A — A -

ARV Eo(o)(fl,O) - 2z x El(o)(fl,O) (18)
first-order relation;

z x Eo(l)(fl,O) - zx El(l)(?J.O) +3 (%) (19)
where
) A A A _ _(0) _(0)
7@ =[Exmzenza xI]-[E - | .0 @0

8




Also from Egs.(13) and (14)

+ [ Zh 3, %V xE, ] (F ,0) (21)

= (0)] =
+[zna, xvxE, ] (%,.0) (22)
Equations (22) and (6b) yield the following relations.
Zeroth-order relation:
A = (0] ,= A = (0)],=
z x [vxEP] @0 - zx[vx E l,.0 (23)
first-order relation:
" = ()] ,= A [ = (1)] - - ..
z x [ v x Eg ](rl,O) -zx [vx EP|E,0+iE) (24)




where

_(0) (0)

3(? [(z x Vh)(z-v xI) +h z 3, V x 1] [ E ](r ,0)

(25)

The zeroth-order relations of Eqs.(18) and (25) are indeed a replica
of Eq.(9). Moreover we do have an explicit zeroth-order solution by
means of Eq.(12). So our task now is to find the first-order solution.
In this context we note that the first-order electric fields, Eél)(?)

and E{l)(?) satisfy the wave equations

VxVxE (1)(r) ~EEME <0, zs>o0 (26a)

2 =
0 0 0

v x ¥ x El(l)(f) - kim El(l)(f) -0, -d<z<h (26b)

The above equations, in conjunction with Eqs. (19) and (24), lead to the

following solution for E(l)( ).
(0) (0) 1
"(1) - 2_. I - =t J/s="! p—— = s=!
By (E) = { d°F; 1 Cop (T.IDJ(E)) + [ v'x Gy (r,rl)]-s (rl)j
(27)
Thus our first-order solution in Region 0 is expressed as
— _(0) _
Eo(f) = Eo(f) + Eo(f) (28)

10



_€0) (1
where Eo(f) and Eo(?) are given by Eqs.(11) and (27). The scattered

field

s, = o _ =(00)_
Ey*(F) = Ey(F) - Ej (T) is then

0 o (00) _(00)

- S - - -
E,(F) = { dz, [ a°F, ) (F.F)) a(F)- E (F)

(0) -
]

but we know that (see Eq.(12))

_(0) _(00) 0 ®, (00 _(00)
Co  (BE') = G (F,F") + £ dz, [ d°f) .\ (F.F)) a(F))+ &), (F,.F)

(30)

Further, we are interested in the far-zone solution for the scattered

field ﬁos(f) = lim Eos(f). Therefore we need to use the asymptotic
r + o
form of the dyadic Green's function E(OO r,7') = 1lim E(Oozf,f’).
01 r »o 01

Noting these comments we obtain from Egs.(29). (30), (20). (25). (10)

and (11) the following first-order solution for Eos(f).

11




0 © (00) _(00)
B) = [z [a%F &) (. F) q(F): E(E)

where

. _(00) _(00)
3 (E) - [ (ZxVh) 2+hz 3, x T ] . [ E, - E ](?1,0) (32)

. o . _(00) _(00)
i) - [(2 X Vh)(z+¥ X T)+h2azx 7 x 1]-[ E, -E ](fl.O) (33)

. (00) _(00)
Explicit expressions for 001(f,?') and El (?1) are given in

Appendixes A and B.

5. SCATTERING COEFFICIENTS

Suppose a plane wave Ei(?). given as

- A
E'(E) = ag, Elexp [t Roy® T |- (34)

is incident on the random medium layer. The bistatic scattering
coefficients 1&5 can then be readily calculated using the following

definition [Peake, 1959]}°

12




2 = s 2
- lia 4xr” (1Ey" ()] ),,

Tap r+w (35)
a «

I 4
- a cos 001 lEi |
where the subscripts « and B stand for the polarization of the incident

wave and scattered wave respectively; a denotes the illuminated area;

0y 1S the angle of incidence. On using Eq.(31) in Eq.(35) YHB may be

evaluated. Omitting the rather tedious intermediate steps the final

result is presented in the following compact form.

1 (v) (b) (c) / \ O \
Tap ~ 4x cost [ Tap *Tap *Tap ] P \aB = hvy (36)
where
5
(v) — _
Tapg = 2L % )
i=1
|AaiABs|2 f [ ] 1
L, = - . exp| — 2(k] _ +ki _)d |l -1
1
2(l<1mzs+k].lllzi lmzs " lmzi I
) ,.“" A— 2 - b ] ’
\ Pys® ali] Qv(kli— kLs’ - klmzs— klmzi) (38a)
'Bai“ps’z [ |
62 - 21" k" 1 exp[ 2(- kImzs+k;mzi)d ] -1 f
! 1mzi ™ lmzsI
Ay fso02 T = ' '
* ( ﬂls' * i) )v(kli_ kls'- klmzs+k1mzi) (38b)

13




2
lAaiBﬁsl I " ) 1
ST exp] 206} g mzt?® | 71
mzs 1mzi

f, A_ 2 - - ’ ¢
( ﬁls' ali) QV(kLi_ kls'klmzs— klmzi) (38¢)
lBaiBﬂslz I " " 1
b& = Z(k” +k" exP[ z(klmzs+k1mzi)d ] -1 I
lmzs 1mzi
A A+ 2 -— - ' '
( pls' *1i ¢v(kli_ kLs'klmzs+klmzi) (384)
2 -—
LS - A Saﬂ 24 |AaiBﬂi| Qv(Zkli.O ) (38e)
(b) 2 T _z
Tapg ~ 9 # (ki ko)
A - B - Q Gl - - ..,=a ma
zZ . Us X 1 » [ (Pz— Qz ) (kLi kls) + i(P - Q )]
A 7 B = [ a a - - e gee ] | 2
+z eV, XTI (Mz— Nz ) (kli kls) + i1 - )
(39)

14




and

»

A+ 2 5 - b ]
Baihﬁs (sis‘ °11) ’c(kxi kls' - klmzs+ klmzi)

>
(e)<
r - 2 R
af wp Re 1
a B, (8. a7 )t e (k -k S S
ai Bs 1s 1 c 11 Tis’ lmzs 1lmzi
+ A A (3*'-«')20& -k ., -k -k )1
al Bs 1s 11 11 Tis’ lmzs lmzi [
-I'z\-ﬁpx'f-[(ra 5y k- E ) 1 QY]
1 s 2= % 11 Tis N
A B = e e - - —a =a 3 L *
+z-vsxx-[(nz-nz)(kJLi k) + 1 (H -—N)]I
. - >'|
P K mzs < Kymzi (40)
where
_p A+ A_
Us - Aps Pis * Bps P1s P hy : (41)
_h Ay A
Vs = = Pns V1s - Bps Vis (42a)
v Ay A_
vs - Ahs hls + Bvs hls (42b)
-h Ay A_
P -—[Bhivli+Ahivli]/"1 (43a)
~h Ay A_
Q -—[Rhiv01+v01]/'70 (43b)

15




=h A+ A
Po=- 1k1mz1[ By Vit ~ i V1t ] /ny

=h Ar A
Qe -- 1kou[ Ri Voi ~ Voi ] /ng

-V

P = - Fh [ Replacements { 3 >V } ]

-V

2 --% [hﬂ“mw“{tzv}]

-,V _'h Ih_.vl
P - - P Replacements 1 " o I

pi Poi ¥ Poi ;

M ik [ A+ A A ] . h
= ™imzi Bpi pli T Ypi pli » P Vv

/P

1

-.k [ A+ A_] M -hV
o0zi Ry; Poi ~ Poi i '

16

(44a)

(44b)

(45a)

(45b)

(46a)

(46b)

(47a)

(47b)

(48a)

(48b)




. Rp, + Ri, exp[ 12k d ] o)
Fo1erB R exp[ 12k, d]
5
no = | /e ) (50a)
.5
ny = [ weg ] (50b)

[1 ifk -~ -k

A = \ 1i (51)
0 otherwise

J1 if a=p

é - (52)
ap 1 0 otherwise

The other quantities are defined in Appendix A. We have denoted the
spectral densities of the correlation functions C, - t=v.b.c by ¢t'

The superscripts and " over the various propagation constants
indicate their real and imaginary parts respectively. The subscript i
indicates that the angle associated with that quantity is the angle of
incidence. Similarly the subscript s corresponds to the angle of

A

A
scattering. hland v, are the unit polarization vectors of the field
in Region 1 (unperturbed situation) and they stand for horizontal and

vertical polarizations respectively. These vectors are defined in

Appendix A.
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6. DISCUSSION

The representation in which I have presented the scattering

coefficients is very suitable for physical interpretation. There are

b)

p

coefficient v ,. They represent volume scattering, boundary scatterin
of y g y g

three terms r;;),ri and r;;’ which constitute the scattering
and cross scattering (between volume and boundary inhomogeneities).
The five terms that make up r:;’ are schematically described in Fig.2
by corresponding scattering diagrams. We have represented the wave
path by a solid line and corresponding complex conjugate by a dotted
line.

Although it is just a particular case of our general result,
backscattering deserves special attention because of its importance
in several practical applications. To obtain expressions for

backscattering coefficients 62 we let ?is = —E;i in Eqs.(36)-(40).

of
This result is:
dop =i [ oagt ot oy} i {as)={nv] (53)
where
(v) 3
v 2
“ap ;Ll 45 8.8 (53)

18




Figure 2 VOLUME SCATTERING
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- i pi " \ = '
4 " " ex?[ - kg9 ] -1 [ 8,2k LS (55a)
Imzi
2
by =4 |Ay B~ d o (2K ;.0) (55b)
lBoiBQi|2 " | R .
by = T 1 °XP[ 4Kz 19 ] -1 8,2y 2K pzt) (55¢)
lmzi
ai‘;) -w2p2 Qb(Zl-c.li) 605
rALgP '1'.[2 Pl Yk, +1 @" '°]
z i.x (Z—Qz) .Li ( ‘Q)
A =B = e a = e =] | 2
sz oV, xT- [ 2 (f- N ) Ky + i (- N )] \
(56)
o$€) = 20 5 Re [ A, B ® (2% .,0)
H %ap | Pat Fpi X1 Tet LY
+ A A & (2k. .- 2k ) \
ifpi X2 Tt Tul 1mzi’ |
IQ-ﬁﬁxi.[zp kK, +1 (" 6"’)]
AN -B S *
AR [ 2 00— N )k, + i (N “)] }
(57)
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and where

[ -1 if a=h (s8a)
- a
xl 1 - cos 201 if a=v
i
[-1 if a=h (585
27 141 if a=v

The most striking feature of the above result is the disappearance
of depolarization in the case of backscattering. This is not too
surprising when we consider the fact that our result is a first-order
perturbation solution to a scattering problem which has isotropic
characteristics. The other feature is that of enhancement. As shown in
Fig. 2 there are certain scattering processes that constructively
interfere and hence contribute only in the backscattering direction.

Next we try to relate our results to those of others. We

r(V)

mentioned earlier that is the contribution due to volume

(v) is

af

equivalent to that of Zuniga and Kong [1980]’ . However, physical

scattering. Indeed it is easy to verify that our (4=« cos&ol._)_1 r

processes are more clearly identifiable in ours. We next consider the
boundary scattering term, ri;). Barrick and Peake [1967]%, have used
the Rayleigh-Rice method to calculate the bistatic scattering
coefficients of a slightly rough surface. To compare our results with

Oi)—l Fiz). On doing this and

theirs we need to let d » « in (47 cosé
after some algebraic simplifications we notice that our results are in

agreement with theirs.

21




It is pleasing to observe the structure of the results for Yub and

[e] N s .
0 . Indeed several conclusions may be drawn on closer examination of

of
those expressions. Such a task will be undertaken in a future report
which will also present numerical examples.

We have thus solved the problem of scattering from a random medium
layer with a random interface using a first-order approximation. Our
solution is therefore a single scattering solution. Quite obviously our
result is meaningful only when the random inhomogeneities are small. If
not. the phenomenon of multiple scattering will play a dominant role
and it must be properly taken into consideration. We notice that in our
first-order perturbation method the various scattering contributions,
namely, volume. boundary, and volume-boundary. are merely additive.
This is certainly not so in multiple scattering where various
interactions take place and the physical picture is fairly complex
[Mudaliar and Lee. 1991]°. Thus there are limitations to the situations

where these results can be applied. Nevertheless this work has given a

frame-work to analyze the more general case of multiple scattering.

7. CONCLUSION

We have considered the problem of microwave scattering from a
random medium layer with a random interface. Assuming that the random
fluctuations are small, a simple perturbation solution for the
scattered field is obtained. Using this, the bistatic scattering
coefficients are calculated and expressed in a compact meaningful

form. With the help of schematic scattering diagrams the various terms

22




that constitute the scattering coefficients are explained. The special
case of backscattering is considered in some detail. Since this result
is essentially a single scattering approximation. one natural extension
of this work will be to study the case of multiple scattering. This is

left for future work.
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Appendix A

Asymptotic Dyadic Green's Function

ik .r -

- 00 - _ 0 - .-I - —
¢{%%, ) - = kT gk, , z') (1)
where
- Ay Ay - ik, 2z’ Ay A ik ’
'y - 1 1
g(klm’ z') ho h1 Ah e mz 4 ho h1 Bh e IDBZ
ik z! A_ ik ’
+ g; CI Av e lmz™ C; v Bv e 1mz® (A2)
P
%01
Ap -~ i p=h,v (A3)
P
P 12k1 d
Bp - Ap R12 e mz i p=h,v (AL)
P p i2k, d
D =1+Ry R, e 1mz :p=nh,v (AS)
k, -k
h iz jz J \ f 1
R1j - ki " kj : \ i, y=4y10,1,2 / (A6a)
z z
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ek, - ¢k
v i1z i"1z J \ J
R vty gs=n012y
17 ek, * ek,
2k
h iz / \ /
X - i \i.3 s =7\0,1,2 ¢
ij k1 + ka
k 2¢.k
v i i iz \ f
X - ; i, y=\0,1,2y
1j Ky ekt oegk,
Ay A _ _1_ A _ A .
hz-hl—kl (xky vk, ] s t=1,2,3
Ay M A
Ve = hl X kl s t=1, 2,3
A A~ A
Ve = hz X K, ; =1, 2, 3
kt = Qkx + 9ky + lez
A
2 2 .5
keg = ( ke ~ Ky )
2 2
kl w pe,

In the above k1 stands for klm'

notational conciseness.

(A6b)

(A7a)

(A7b)

(A8)

(A9a)

(A9%)

(Al0a)

(Al10b)

(All)

(A12)

This convention is adopted here for
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Appendix B
Unperturbed Electric Fields in Region 1

TE case

(00) .. _ A 1Ky oT A ARy oF
B, "(r) =E, [ By byg © Ay by ] (B1)
T™™ case
(00) .\ _ Ay tkyeT - kygeT
B, () =E [ Boyvig & T YA, Ve ] (82)

All quantities in the above equations are defined in Appendix A.
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Nomenclature

h : zero-mean random function describing surface height
&g : permittivity of the medium in Region j

€m @ mean part of g

€ ¢ : fluctuating part of g,

Ce : correlation function; t = {v.b,c}

ctz : variance associated with t = {v.b,c¢}

®, spectral density

T, projection of T on the xy plane

i% : electric field in Region j

Ea«» : electric field in Region j when the boundary is unperturbed

Ea«x»: electric field in Region j when both

boundary and medium are unperturbed

(]

01 dyadic Green's function for source in Region 1

and observation point in Region 0
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-gg). 5:20):dyadic Green's functions; superscript conventions
same as in Ej

E> : incoherent scattered field in Region 0

E% : incident field in Region 0
901 : angle of incidence

Yuﬂ : bistatic scattering coefficient;

a :- polarization of the incident field
B :- polarization of the scattered field

02; back scattering coefficient

Ei : propagation vector in Region j
klm : mean part of k

k1mz : z-component of the kim

klmzs’ klmz evaluated in the scattered (observation) direction

klmzi’ klmz evaluated in the direction of the incident wave

A

h0 : unit vector for horizontal polarization in Region 0

A

Vo ¢ unit vector for vertical polarization in Region 1

A

a* : unit polarization vector (a = h or v) for upward travelling wave
A - . . [

a : unit polarization vector for downward travelling wave
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